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Challenge:
● Significantly generalizes NP-hard problems
● Variant of 50-year open problem

Questions for today:
● What can be achieved in polynomial time?
● Can limited adaptivity ever suffice?
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Model, related work
Results
Methods: adaptivity
Methods: polynomial-time results
Conclusion
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Markov Search Process: definition
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Formal (ish) problem statement

Combinatorial Markov Search:
Given n Markov Search Processes1 M1, . . . , Mn all parameters are known
Interact arbitrarily, incurring all costs
Eventually halt and claim some i
→ Receive reward reached in Mi

Maximize expected reward - costs
Benchmark: fully adaptive optimal algorithm.

What can be achieved in polynomial time?
What level of adaptivity is necessary?
(bonus) What if each MSP is controlled by a strategic agent?

1each Mi = (Si, AI , Pi, Ci, Vi) = (States, Actions, Transition Function, Costs, Rewards).
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Prior work: Pandora’s Box

Weitzman 1979: index theorem, polytime optimal.
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Prior work: Multistage Pandora’s Box

Multistage or “nested” Pandora’s Box:2: index theorem, polytime optimal.
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Prior work: nonobligatory Pandora’s Box

Pandora’s Box with nonobligatory inspection3: NP-hard, PTAS
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More general MSP structures: highly open

Pandora’s Box with partial inspection:4 constant-factor approx.

Local hedging technique:5 extends Whittle condition for some MSPs
logarithmic approx for weighing scale problem
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4Aouad et al. 2020; Chawla et al. 2024 (indep.)
5Doval and Scully 2024; Chawla et al. 2024 (indep.)
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Related: superprocesses, Bayesian Bandits

Superprocess6: analogue with MDPs where we never stop and claim

If each is a bandit: Gittins index theorem; slightly more generally, Whittle index theorem

Without the Whittle condition: little work (see Ma 2018)
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no costs, i.e. open drawers for free
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Combinatorial Markov Search: main result 1

Theorem (Adaptivity gap)
If F is downward-closed and there exists an α prophet inequality for F

to the ex-ante
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Last things first

Lemma (c): Online α-approx for Bandits in Cabinets =⇒ online α-approx for
arbitrary MSPs.
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Reminder: reductions

Theorem (Adaptivity gap)
If F is a downward-closed constraint and there exists an α prophet inequality for F to
the ex-ante relaxation, then there is an online α-approx for CMS where the alternatives
are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.
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From Prophets to Cabinets-Prophets

Lemma (a): ex-ante Prophet Inequality α =⇒ ex-ante online α-approx for Cabinets.

Prophet inequality Cabinets
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Note: there exists a matroid prophet inequality of 1
2 to ex-ante-OPT (Lee, Singla 2018).
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Reminder: reductions (redux)

Theorem (Adaptivity gap)
If F is a downward-closed constraint and there exists an α prophet inequality for F to
the ex-ante relaxation, then there is an online α-approx for CMS where the alternatives
are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.
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Polynomial-time approximation
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Toward polynomial time

Problem: reduction (c) is exponential

Solution:
Modify prophet inequality (a) to interface with an oracle
Implement the oracle for (c)
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An oracle for Markov Search Processes

Single-Agent Utility Problem, SAUP(M, T ):
interact with M, take-it-or-leave-it, assuming a price of T for claiming a reward.

SAUP-based online algorithm:
for each arrival i, set a threshold Ti, then optimally solve SAUP(Mi, Ti).

cost reward…

…

…

must pay T to 
claim reward
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Polytime approx for Combinatorial Markov Search

Proposition
For arbitrary MSPs and any matroid constraint:

There is an online, polytime, SAUP-based, 1
2 -approx for Cabinets. to ex-ante-OPT

allows computing Ti

→ we roll an original proof based on Lee and Singla 2018.
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Polytime approx for Combinatorial Markov Search

Proposition
For arbitrary MSPs and any matroid constraint:

There is an online, polytime, SAUP-based, 1
2 -approx for Cabinets. to ex-ante-OPT

There is a polynomial-time algorithm for SAUP(Mi, Ti).
There is an FPTAS for ex-ante-OPT(M1, . . . , Mn). allows computing Ti

Theorem (Main result)
For CMS with any matroid constraint, there is an online poly(input, 1

ϵ
)-time algorithm

that, for any ϵ > 0, guarantees a 1
2 − ϵ approx. uses add’l trick for ϵ
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Bonus: strategic agents

Suppose:
Each agent i = 1, . . . , n controls a Markov Search Process Mi

Mechanism can select any feasible subset of agents as “winners”
i can collect the reward from Mi iff they are selected

Corollary
For matroids, this problem admits a Price of Anarchy of 1

2 .

→ We sequentially offer agents prices (thresholds) from our algorithm; they run SAUP.
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Wrapup
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Summary and Future Work

Summary:
Model: n independent costly search processes, followed by selection of rewards
Surprise 1: non-adaptive 1

2 approx
Surprise 2: polytime 1

2 − ϵ approx
Bonus: Price of Anarchy 1

2

Future work:
Improved algorithms or hardness result
Limits of “approximate index theorems” (see Chawla et al. 2025)
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Conclusion
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