Prophet Inequalities for Bandits, Cabinets, and DAGs

Robin Bowers, Elias Lindgren, and **Bo Waggoner** University of Colorado, Boulder

Columbia U. May 2025

Introduction

Alternatives

. .

Decisionmaker

Potential products

0

1

. .

n

Manufacturer

Manufacturer

can interactively research & develop...

...and eventually produce **one**.

Model, related work

- Results
- Methods: adaptivity
- Methods: polynomial-time results
- Conclusion

Markov Search Process: definition

- Begin in the "start" state
- Decide among actions with cost C(state, action)

Markov Search Process: definition

- Begin in the "start" state
- Decide among actions with cost C(state, action)
- Undergo stochastic transition P(state, action)

DAG structure

Markov Search Process: definition

- Begin in the "start" state
- Decide among actions with cost C(state, action)
- Undergo stochastic transition P(state, action)

DAG structure

- ...
- Reach a terminal state with an *available* reward.

Markov Search Processes

independent, known structure

Decisionmaker

Combinatorial Markov Search:

- Given n Markov Search Processes¹ $\mathcal{M}_1, \ldots, \mathcal{M}_n$
- Interact arbitrarily, incurring all costs
- Eventually halt and claim some *i*
 - ightarrow Receive reward reached in \mathcal{M}_i
- Maximize expected reward costs
- Benchmark: fully adaptive optimal algorithm.

all parameters are known

Combinatorial Markov Search:

- Given n Markov Search Processes¹ $\mathcal{M}_1, \ldots, \mathcal{M}_n$
- Interact arbitrarily, incurring all costs
- Eventually halt and claim a feasible subset $F \in \mathcal{F}$
 - \rightarrow Receive rewards reached in each \mathcal{M}_i where $i \in F$
- Maximize expected sum of rewards costs
- Benchmark: fully adaptive optimal algorithm.

all parameters are known

 $\mathcal{F} \subseteq 2^n$ downward-closed

Combinatorial Markov Search:

- Given n Markov Search Processes¹ $\mathcal{M}_1, \ldots, \mathcal{M}_n$
- Interact arbitrarily, incurring all costs
- Eventually halt and claim a feasible subset $F \in \mathcal{F}$
 - \rightarrow Receive rewards reached in each \mathcal{M}_i where $i \in F$
- Maximize expected sum of rewards costs
- Benchmark: fully adaptive optimal algorithm.

Questions:

What can be achieved in polynomial time?

all parameters are known

 $\mathcal{F} \subseteq 2^n$ downward-closed

Combinatorial Markov Search:

- Given n Markov Search Processes¹ $\mathcal{M}_1, \ldots, \mathcal{M}_n$
- Interact arbitrarily, incurring all costs
- Eventually halt and claim a feasible subset $F \in \mathcal{F}$
 - \rightarrow Receive rewards reached in each \mathcal{M}_i where $i \in F$
- Maximize expected sum of rewards costs
- Benchmark: fully adaptive optimal algorithm.

Questions:

- What can be achieved in polynomial time?
- What level of adaptivity is necessary?

all parameters are known

 $\mathcal{F} \subseteq 2^n$ downward-closed

Combinatorial Markov Search:

- Given n Markov Search Processes¹ $\mathcal{M}_1, \ldots, \mathcal{M}_n$
- Interact arbitrarily, incurring all costs
- Eventually halt and claim a feasible subset $F \in \mathcal{F}$
 - \rightarrow Receive rewards reached in each \mathcal{M}_i where $i \in F$
- Maximize expected sum of rewards costs
- Benchmark: fully adaptive optimal algorithm.

Questions:

- What can be achieved in polynomial time?
- What level of adaptivity is necessary?
- (bonus) What if each MSP is controlled by a strategic agent?

¹each $\mathcal{M}_i = (S_i, A_I, P_i, C_i, V_i) = ($ States, Actions, Transition Function, Costs, Rewards).

all parameters are known

 $\mathcal{F} \subseteq 2^n$ downward-closed

Prior work: Pandora's Box

Weitzman 1979:

٠

Prior work: Pandora's Box

Weitzman 1979:

•

From now on: omit stochastic transitions, only draw decision structure.

Prior work: Pandora's Box

Weitzman 1979: index theorem, polytime optimal.

Index theorem:

- Index is a function only of a box
- Global policy as function of indices is **optimal**

•

Prior work: Multistage Pandora's Box

Multistage or "nested" Pandora's Box:²: index theorem, polytime optimal.

²Dumitriua et al. 2003; Guha and Munagala 2008; Kleinberg et al. 2016; Gupta et al. 2019; Bowers and Waggoner 2024; Chawla et al. 2024

Prior work: Multistage Pandora's Box

Multistage or "nested" Pandora's Box:²: index theorem, polytime optimal.

"Bandit Markov Search Processes" or "bandits"

²Dumitriua et al. 2003; Guha and Munagala 2008; Kleinberg et al. 2016; Gupta et al. 2019; Bowers and Waggoner 2024; Chawla et al. 2024

Prior work: nonobligatory Pandora's Box

Pandora's Box with nonobligatory inspection³: NP-hard, PTAS

.

³Doval 2018; Beyhaghi and Kleinberg 2018; Beyhaghi and Cai 2023; Fu et al. 2023

More general MSP structures: highly open

Pandora's Box with partial inspection:⁴ constant-factor approx.

⁴Aouad et al. 2020; Chawla et al. 2024 (indep.) ⁵Doval and Scully 2024; Chawla et al. 2024 (indep.)

More general MSP structures: highly open

Pandora's Box with partial inspection:⁴ constant-factor approx.

Local hedging technique:⁵ extends Whittle condition for some MSPs *logarithmic approx for weighing scale problem*

⁴Aouad et al. 2020; Chawla et al. 2024 (indep.)
⁵Doval and Scully 2024; Chawla et al. 2024 (indep.)

Related: superprocesses, Bayesian Bandits

Superprocess⁶: analogue with MDPs where we **never stop and claim**

⁶P. Nash 1973; Gittins 1979; Whittle 1980; Glazebrook 1982, 1993; Ma 2018

Related: superprocesses, Bayesian Bandits

Superprocess⁶: analogue with MDPs where we **never stop and claim**

If each is a bandit: Gittins index theorem; slightly more generally, Whittle index theorem

Without the Whittle condition: little work (see Ma 2018)

⁶P. Nash 1973; Gittins 1979; Whittle 1980; Glazebrook 1982, 1993; Ma 2018

Our results

Approach: online algorithms.

- Face $\mathcal{M}_1, \ldots, \mathcal{M}_n$ one by one in arbitrary order.
- For each, "take it or leave it" before moving on.

Approach: online algorithms.

- Face $\mathcal{M}_1, \ldots, \mathcal{M}_n$ one by one in arbitrary order.
- For each, "take it or leave it" before moving on.

Prophet inequality⁷:

- special case where each M_i is just a random reward.
- constant-factor approx, namely $\frac{1}{2}$, including with matroid constraints.

⁷Samuel-Cahn 1986; Kleinberg, Weinberg 2012

Approach: online algorithms.

- Face $\mathcal{M}_1, \ldots, \mathcal{M}_n$ one by one in arbitrary order.
- For each, "take it or leave it" before moving on.

Prophet inequality⁷:

- special case where each M_i is just a random reward.
- constant-factor approx, namely $\frac{1}{2}$, including with matroid constraints.

First question: ignoring efficiency, when can online algs yield nontrivial results?

⁷Samuel-Cahn 1986; Kleinberg, Weinberg 2012
Approach: online algorithms.

- Face $\mathcal{M}_1, \ldots, \mathcal{M}_n$ one by one in arbitrary order.
- For each, "take it or leave it" before moving on.

Theorem (Adaptivity gap, inefficiently)

Approach: online algorithms.

- Face $\mathcal{M}_1, \ldots, \mathcal{M}_n$ one by one in arbitrary order.
- For each, "take it or leave it" before moving on.

Theorem (Adaptivity gap, inefficiently)

For arbitrary MSPs and matroid constraints, there exists an online $\frac{1}{2}$ approximation.

Approach: online algorithms.

- Face $\mathcal{M}_1, \ldots, \mathcal{M}_n$ one by one in arbitrary order.
- For each, "take it or leave it" before moving on.

Theorem (Adaptivity gap, inefficiently)

For arbitrary MSPs and matroid constraints, there exists an online $\frac{1}{2}$ approximation.

Theorem (Polytime approx)

Approach: online algorithms.

- Face $\mathcal{M}_1, \ldots, \mathcal{M}_n$ one by one in arbitrary order.
- For each, "take it or leave it" before moving on.

Theorem (Adaptivity gap, inefficiently)

For arbitrary MSPs and matroid constraints, there exists an online $\frac{1}{2}$ approximation.

Theorem (Polytime approx)

For arbitrary MSPs and matroid constraints, there exists an online poly(input, $\frac{1}{\epsilon}$)-time algorithm that, for any $\epsilon > 0$, guarantees a $\frac{1}{2} - \epsilon$ approximation.

Adaptivity gap

Consider our problem under special cases of the Markov Search Process structure:

 \bigcirc

Random number

Consider our problem under special cases of the Markov Search Process structure:

Bandit

Weitzman with matroid constraints and/or bandits: Singla 2018; Esfandiari 2019; Gupta et al. 2019

Consider our problem under special cases of the Markov Search Process structure:

Bandit

Consider our problem under special cases of the Markov Search Process structure:

Random number

Cabinet no costs, i.e. open drawers for free

Consider our problem under special cases of the Markov Search Process structure:

Bandits in Cabinet

Consider our problem under special cases of the Markov Search Process structure:

Random number

Cabinet

Bandits in Cabinet

Markov Search Process

Combinatorial Markov Search: main result 1

Theorem (Adaptivity gap)

If *F* is downward-closed and there exists an *α* prophet inequality for *F* , then there is an online *α*-approx for CMS where the alternatives are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Combinatorial Markov Search: main result 1

Theorem (Adaptivity gap)

If \mathcal{F} is downward-closed and there exists an α prophet inequality for \mathcal{F} to the ex-ante relaxation, then there is an online α -approx for CMS where the alternatives are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Bandits in cabinets

Markov Search Processes

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea⁷: each fixed policy in the MSP induces a bandit.

exponentially many

⁷Chawla et al. 2024, independently

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit.

exponentially many

Bandits in cabinets

Markov Search Processes

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit.

exponentially many

Lemma: $OPT(\mathcal{M}_i) = OPT(cabinet_i).$

.

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit.

exponentially many

Lemma: $OPT(\mathcal{M}_i) = OPT(cabinet_i).$

Lemma: $OPT(\mathcal{M}_1, \ldots, \mathcal{M}_n) \leq ?$

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit.

exponentially many

Lemma: $OPT(\mathcal{M}_i) = OPT(cabinet_i).$

Lemma: $OPT(\mathcal{M}_1, \ldots, \mathcal{M}_n) \leq ex-ante-OPT(cabinet_1, \ldots, cabinet_n).$

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit.

exponentially many

Lemma: $OPT(\mathcal{M}_i) = OPT(cabinet_i).$

Lemma: $OPT(\mathcal{M}_1, \ldots, \mathcal{M}_n) \leq ex-ante-OPT(cabinet_1, \ldots, cabinet_n).$

ex-ante feasible: $Pr[choose 1] + \cdots + Pr[choose n] \le 1$

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit.

exponentially many

Lemma: $OPT(\mathcal{M}_i) = OPT(cabinet_i).$

Lemma: $OPT(\mathcal{M}_1, \ldots, \mathcal{M}_n) \leq ex-ante-OPT(cabinet_1, \ldots, cabinet_n).$

ex-ante feasible: $(\Pr[1 \in F], \dots, \Pr[n \in F]) \in conv(\{1_S : S \in \mathcal{F}\})$

Lemma (c): Online α -approx for Bandits in Cabinets \implies online α -approx for arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit.

exponentially many

Lemma: $OPT(\mathcal{M}_i) = OPT(cabinet_i).$

Lemma: $OPT(\mathcal{M}_1, \ldots, \mathcal{M}_n) \leq ex-ante-OPT(cabinet_1, \ldots, cabinet_n).$

Lemma: $ALG(\mathcal{M}_1, \ldots, \mathcal{M}_n) = ALG(cabinet_1, \ldots, cabinet_n).$

Theorem (Adaptivity gap)

If \mathcal{F} is a downward-closed constraint and there exists an α prophet inequality for \mathcal{F} to the ex-ante relaxation, then there is an online α -approx for CMS where the alternatives are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Lemma (a): ex-ante Prophet Inequality $\alpha \implies$ ex-ante online α -approx for Cabinets.

- ex-ante-OPT decides ~ P_i non-adaptively
- so it sees a set of independent random vars

n 🔿

1

Prophet inequality

Cabinets

1

n

Lemma (a): ex-ante Prophet Inequality $\alpha \implies$ ex-ante online α -approx for Cabinets.

- ex-ante-OPT decides $\sim \mathbf{P}_{\mathbf{I}}$ non-adaptively
- so it sees a set of independent random vars
- Reduction: we also decide $\sim \mathbf{P}_{i}$ and apply Prophet inequality prophets alg

Cabinets

Theorem (Adaptivity gap)

If \mathcal{F} is a downward-closed constraint and there exists an α prophet inequality for \mathcal{F} to the ex-ante relaxation, then there is an online α -approx for CMS where the alternatives are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Polynomial-time approximation

Toward polynomial time

Problem: reduction (c) is exponential

Bandits in Cabinet

Toward polynomial time

Problem: reduction (c) is exponential

Solution:

- Modify prophet inequality (a) to interface with an oracle
- Implement the oracle for (c)

Bandits in Cabinet

Single-Agent Utility Problem, SAUP(\mathcal{M}, T):

interact with \mathcal{M} , take-it-or-leave-it, assuming a price of T for claiming a reward.

must pay *T* to claim reward

Single-Agent Utility Problem, SAUP(\mathcal{M}, T):

interact with \mathcal{M} , take-it-or-leave-it, assuming a price of T for claiming a reward.

SAUP-based online algorithm:

for each arrival *i*, set a threshold T_i , then optimally solve SAUP (\mathcal{M}_i, T_i) .

ALG: set thresholds T_i with custom prophet inequality; run SAUP on each arrival.

Single-Agent Utility Problem, SAUP(\mathcal{M}, T):

interact with \mathcal{M} , take-it-or-leave-it, assuming a price of T for claiming a reward.

SAUP-based online algorithm:

for each arrival *i*, set a threshold T_i , then optimally solve SAUP (\mathcal{M}_i, T_i) .

Single-Agent Utility Problem, SAUP(\mathcal{M}, T):

interact with \mathcal{M} , take-it-or-leave-it, assuming a price of T for claiming a reward.

SAUP-based online algorithm:

for each arrival *i*, set a threshold T_i , then optimally solve SAUP (\mathcal{M}_i, T_i) .

Proposition

For arbitrary MSPs and any matroid constraint:

• There is an online, polytime, SAUP-based, $\frac{1}{2}$ -approx for Cabinets. to ex-ante-OPT

 \rightarrow we roll an original proof based on Lee and Singla 2018.

Proposition

For arbitrary MSPs and any matroid constraint:

• There is an online, polytime, SAUP-based, $\frac{1}{2}$ -approx for Cabinets. to ex-ante-OPT

 \rightarrow we roll an original proof based on Lee and Singla 2018.

Proposition

For arbitrary MSPs and any matroid constraint:

- There is an online, polytime, SAUP-based, $\frac{1}{2}$ -approx for Cabinets. to ex-ante-OPT
 - There is a polynomial-time algorithm for $SAUP(\mathcal{M}_i, T_i)$.

ALG: set thresholds T_i with custom prophet inequality; run SAUP on each arrival.

Proposition

For arbitrary MSPs and any matroid constraint:

- There is an online, polytime, SAUP-based, $\frac{1}{2}$ -approx for Cabinets. to ex-ante-OPT
- There is a polynomial-time algorithm for $SAUP(\mathcal{M}_i, T_i)$.
- There is an FPTAS for ex-ante-OPT $(\mathcal{M}_1, \ldots, \mathcal{M}_n)$.

allows computing T_i

ALG: set thresholds T_i with custom prophet inequality; run SAUP on each arrival.

Proposition

For arbitrary MSPs and any matroid constraint:

- There is an online, polytime, SAUP-based, $\frac{1}{2}$ -approx for Cabinets. to ex-ante-OPT
- There is a polynomial-time algorithm for $SAUP(\mathcal{M}_i, T_i)$.
- There is an FPTAS for ex-ante-OPT($\mathcal{M}_1, \ldots, \mathcal{M}_n$).

allows computing T_i

Theorem (Main result)

For CMS with any matroid constraint, there is an online poly(input, $\frac{1}{\epsilon}$)-time algorithm that, for any $\epsilon > 0$, guarantees a $\frac{1}{2} - \epsilon$ approx. uses add'l trick for ϵ

Bonus: strategic agents

Suppose:

- Each agent $i = 1, \ldots, n$ controls a Markov Search Process \mathcal{M}_i
- Mechanism can select any feasible subset of agents as "winners"
- i can collect the reward from \mathcal{M}_i iff they are selected

Bonus: strategic agents

Suppose:

- Each agent $i = 1, \ldots, n$ controls a Markov Search Process \mathcal{M}_i
- Mechanism can select any feasible subset of agents as "winners"
- i can collect the reward from \mathcal{M}_i iff they are selected

Corollary

For matroids, this problem admits a Price of Anarchy of $\frac{1}{2}$.

ightarrow We sequentially offer agents prices (thresholds) from our algorithm; they run SAUP.

Wrapup

Summary and Future Work

Summary:

- Model: n independent costly search processes, followed by selection of rewards
- Surprise 1: non-adaptive $\frac{1}{2}$ approx
- Surprise 2: polytime $\frac{1}{2} \epsilon$ approx
- Bonus: Price of Anarchy $\frac{1}{2}$

Summary and Future Work

Summary:

- Model: n independent costly search processes, followed by selection of rewards
- Surprise 1: non-adaptive $\frac{1}{2}$ approx
- Surprise 2: polytime $\frac{1}{2} \epsilon$ approx
- Bonus: Price of Anarchy $\frac{1}{2}$

Future work:

- Improved algorithms or hardness result
- Limits of "approximate index theorems" (see Chawla et al. 2025)

Conclusion

