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- .
Pote rOUTICS fingerprint Manufacturer

"% Challenge:
e Significantly generalizes NP-hard problems
e Variant of 50-year open problem

teractively
Questions for today: rch &

e What can be achieved in polynomial time? op...
e (an limited adaptivity ever suffice?

...and eventually

produce one.
none
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Model, related work

Results

Methods: adaptivity

Methods: polynomial-time results

Conclusion
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Markov Search Process: definition

cost

e Begin in the “start” state
e Decide among actions with cost C(state, action)
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Markov Search Process: definition

cost

stochastic -,

transition . O

e Begin in the “start” state
e Decide among actions with cost C(state, action)
e Undergo stochastic transition P(state, action)

DAG structure
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Markov Search Process: definition

cost

D reward

terminal

O state
.',: ., O :O reward’

stochastic
A<> reward”
Begin in the “start” state

transition O
Decide among actions with cost C(state, action)
Undergo stochastic transition P(state, action) DAG structure

Reach a terminal state with an available reward.
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Markov Search Processes Decisionmaker
independent, known structure

eventually
pick one

O h "O reward
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Combinatorial Markov Search:
= Given n Markov Search Processes! M;,..., M, all parameters are known
" Interact arbitrarily, incurring all costs

= Eventually halt and claim some ¢
— Receive reward reached in M;

= Maximize expected reward - costs

= Benchmark: fully adaptive optimal algorithm.

leach M; = (S;, A1, P;, C;,V;) = (States, Actions, Transition Function, Costs, Rewards).
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Combinatorial Markov Search:

= Given n Markov Search Processes! M;,..., M, all parameters are known
" Interact arbitrarily, incurring all costs
= Eventually halt and claim a feasible subset F' € F F C 2™ downward-closed

— Receive rewards reached in each M; where i € F

® Maximize expected sum of rewards - costs

Benchmark: fully adaptive optimal algorithm.

Questions:
= What can be achieved in polynomial time?
= What level of adaptivity is necessary?
» (bonus) What if each MSP is controlled by a strategic agent?

leach M; = (S;, A1, P;, C;,V;) = (States, Actions, Transition Function, Costs, Rewards).
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Weitzman 1979:
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Weitzman 1979:

L O—0

From now on: omit stochastic transitions,
n O—~0 "
only draw decision structure.
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Weitzman 1979: index theorem, polytime optimal.
Index theorem:

1 ( ) ( ) e Index is a function only of a box
e Global policy as function of indices

is optimal
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Multistage or “nested” Pandora’s Box:2: index theorem, polytime optimal.

L O—0O0—0—=0

n O—-~O0C—_C0—"—0—7"~0

2Dumitriua et al. 2003; Guha and Munagala 2008; Kleinberg et al. 2016; Gupta et al. 2019;
Bowers and Waggoner 2024; Chawla et al. 2024
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Multistage or “nested” Pandora’s Box:2: index theorem, polytime optimal.

L O—0O0—0—=0

“Bandit Markov Search Processes” or “bandits”

n O—-~O0C—_C0—"—0—7"~0

2Dumitriua et al. 2003; Guha and Munagala 2008; Kleinberg et al. 2016; Gupta et al. 2019;
Bowers and Waggoner 2024; Chawla et al. 2024
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Pandora’s Box with nonobligatory inspection®: NP-hard, PTAS

cost random reward

free fixed reward

" 0%

3Doval 2018; Beyhaghi and Kleinberg 2018; Beyhaghi and Cai 2023; Fu et al. 2023
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Pandora’s Box with partial inspection:* constant-factor approx.

cost’
cost reward

cost’

Pandora with
partial inspection

n X

*Aouad et al. 2020; Chawla et al. 2024 (indep.)
*Doval and Scully 2024; Chawla et al. 2024 (indep.)

10/28



Pandora’s Box with partial inspection:* constant-factor approx.

Local hedging technique:® extends Whittle condition for some MSPs
logarithmic approx for weighing scale problem

cost’
1 cost reward

cost’

Pandora with
partial inspection

n X

*Aouad et al. 2020; Chawla et al. 2024 (indep.)
®Doval and Scully 2024; Chawla et al. 2024 (indep.)
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Superprocess®: analogue with MDPs where we never stop and claim

O—» .- MDP,

infinite
horizon

costs .
1 or rewards

6P. Nash 1973; Gittins 1979; Whittle 1980; Glazebrook 1982, 1993; Ma 2018
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Superprocess®: analogue with MDPs where we never stop and claim
If each is a bandit: Gittins index theorem; slightly more generally, Whittle index theorem

Without the Whittle condition: little work (see Ma 2018)

costs . Q—> .- MDP,
!

infinite
horizon

6P. Nash 1973; Gittins 1979; Whittle 1980; Glazebrook 1982, 1993; Ma 2018
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Our results
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Approach: online algorithms.
» Face My,..., M, one by one in arbitrary order.
= For each, “take it or leave it" before moving on.

cost O - /O reward
! 50
=0

ofole

o8
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Approach: online algorithms.
» Face My,..., M, one by one in arbitrary order.
= For each, “take it or leave it" before moving on.

Prophet inequality’:
B special case where each M, is just a random reward.

B constant-factor approx, namely % including with matroid constraints.

"Samuel-Cahn 1986, Kleinberg, Weinberg 2012
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» Face My,..., M, one by one in arbitrary order.
= For each, “take it or leave it" before moving on.

Prophet inequality’:
B special case where each M, is just a random reward.

B constant-factor approx, namely % including with matroid constraints.

First question: ignoring efficiency, when can online algs yield nontrivial results?

"Samuel-Cahn 1986, Kleinberg, Weinberg 2012
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Approach: online algorithms.
» Face My,..., M, one by one in arbitrary order.
= For each, “take it or leave it" before moving on.

For arbitrary MSPs and matroid constraints, there exists an online % approximation.

For arbitrary MSPs and matroid constraints, there exists an online poly(input, %)-time
algorithm that, for any € > 0, guarantees a % — € approximation.
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Adaptivity gap
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Consider our problem under special cases of the Markov Search Process structure:

O

Random number
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Consider our problem under special cases of the Markov Search Process structure:

O

Random number

l

Bandit

Weitzman with matroid constraints and/or bandits: Singla 2018; Esfandiari 2019; Gupta et al. 2019
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Consider our problem under special cases of the Markov Search Process structure:

O .
Random number o

l ? Markov Search
— [} Process

Bandit
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Consider our problem under special cases of the Markov Search Process structure:

O

Random number Cabinet
no costs, i.e. open drawers for free
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Consider our problem under special cases of the Markov Search Process structure:

O

Random number Cabinet

Markov Search
Process

LAk

Bandits in Cabinet
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If F is downward-closed and there exists an a prophet inequality for F
, then there is an online a-approx for CMS where the alternatives are: (a)
Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Markov Search
Process

(a)
Random number Cabinet O@ o ﬁ

LAk

Bandits in Cabinet
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If F is downward-closed and there exists an o prophet inequality for F to the ex-ante
relaxation, then there is an online a-approx for CMS where the alternatives are: (a)
Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Markov Search
Process

(a)
Random number Cabinet O@ o ﬁ

Lilk

Bandits in Cabinet
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Lemma (c): Online a-approx for Bandits in Cabinets = online a-approx for
arbitrary MSPs.

Lk

Bandits in cabinets
Markov Search

Processes
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Lemma (c): Online a-approx for Bandits in Cabinets = online a-approx for
arbitrary MSPs.

Idea”: each fixed policy in the MSP induces a bandit. exponentially many

8%

Bandits in cabinets
Markov Search

Processes

"Chawla et al. 2024, independently
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Markov Search
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Lemma (c): Online a-approx for Bandits in Cabinets = online a-approx for
arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit. exponentially many
Lemma: OPT(M;) = OPT(cabinet;).

L

Bandits in cabinets
Markov Search

Processes
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Lemma (c): Online a-approx for Bandits in Cabinets = online a-approx for
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Lemma: OPT(M;) = OPT(cabinet;).
1 O<§§§:§§

Lemma: OPT(M,,...,. M,) <7
1 O@ -
n o@éﬁ

QO§3§EE
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Lemma (c): Online a-approx for Bandits in Cabinets = online a-approx for
arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit. exponentially many
Lemma: OPT(M;) = OPT(cabinet;).
Lemma: OPT(M;,..., M,,) < ex-ante-OPT(cabinet,. .. cabinet,)

o 2% f
o " XSS

ex-ante feasible: Pr[choose 1] + - - - + Pr[choose n] < 1
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Lemma (c): Online a-approx for Bandits in Cabinets = online a-approx for
arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit. exponentially many
Lemma: OPT(M;) = OPT(cabinet;).
Lemma: OPT(M;,..., M,,) < ex-ante-OPT(cabinet,. .. cabinet,)

1 o% S O@% ﬁ
n 128 n O
=3 3%

ex-ante feasible: (Pr[1 € F],...,Pr[n € F]) € conv({lg: S € F})
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Lemma (c): Online a-approx for Bandits in Cabinets = online a-approx for
arbitrary MSPs.

Idea: each fixed policy in the MSP induces a bandit. exponentially many
Lemma: OPT(M;) = OPT(cabinet;).
Lemma: OPT(M;,..., M,) < ex-ante-OPT(cabinet,. .. cabinet,).
Lemma: ALG(M,, ..., M,) = ALG(cabinety,.. ., cabinet,). O

=
o

bbb B
5b 88
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If F is a downward-closed constraint and there exists an « prophet inequality for F to
the ex-ante relaxation, then there is an online a-approx for CMS where the alternatives
are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Markov Search
Process

(a)
Random number Cabinet O@ o ﬁ

Lilk

Bandits in Cabinet
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Lemma (a): ex-ante Prophet Inequality « = ex-ante online a-approx for Cabinets.

1 O 1

n O n O<8

Prophet inequality Cabinets

Note: there exists a matroid prophet inequality of % to ex-ante-OPT (Lee, Singla 2018).
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Lemma (a): ex-ante Prophet Inequality « = ex-ante online a-approx for Cabinets.

1 O

n O

Prophet inequality

Observation: ex-ante-OPT is nonadaptive!
(WLOG)

=35

Cabinets

Note: there exists a matroid prophet inequality of % to ex-ante-OPT (Lee, Singla 2018).
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Lemma (a): ex-ante Prophet Inequality « = ex-ante online a-approx for Cabinets.

e cx-ante-OPT
1 O decides ~ P, 1
non-adaptively

n Q n

jgw

Prophet inequality Cabinets

Note: there exists a matroid prophet inequality of % to ex-ante-OPT (Lee, Singla 2018).
19/28
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e ecx-ante-OPT
1 O decides ~ Pi O 1

non-adaptively \/\
2

® SO0 it sees a set
of independent
random vars

n O O n

Prophet inequality Cabinets

Note: there exists a matroid prophet inequality of % to ex-ante-OPT (Lee, Singla 2018).
19/28



Lemma (a): ex-ante Prophet Inequality « = ex-ante online a-approx for Cabinets.

e ecx-ante-OPT
1 O decides ~ P, O 1
non-adaptively \/\
2
® SO it sees a set

of independent
random vars

P
n e Reduction: we m
O also decide ~ P, O

and apply .

Prophet inequality prophets alg Cabinets

Note: there exists a matroid prophet inequality of % to ex-ante-OPT (Lee, Singla 2018).
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If F is a downward-closed constraint and there exists an « prophet inequality for F to
the ex-ante relaxation, then there is an online a-approx for CMS where the alternatives
are: (a) Cabinets, (b) Bandits in Cabinets, (c) arbitrary Markov Search Processes.

Markov Search
Process

(a)
Random number Cabinet O@ o ﬁ

Lilk

Bandits in Cabinet
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Polynomial-time approximation
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Problem: reduction (c) is exponential

(a)
Random number Cabinet Q@% o ﬁ

Markov Search
Process

Lk

Bandits in Cabinet
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Problem: reduction (c) is exponential

Solution:
= Modify prophet inequality (@) to interface with an oracle
» Implement the oracle for (c)

(a)
Random number Cabinet Q@% ﬁ

Markov Search
Process

Lhdk

Bandits in Cabinet
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Single-Agent Utility Problem, SAUP (M, T):
interact with M, take-it-or-leave-it, assuming a price of T for claiming a reward.

cost oM /Oreward
must pay 7 to
claim reward
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Single-Agent Utility Problem, SAUP (M, T):
interact with M, take-it-or-leave-it, assuming a price of T for claiming a reward.

SAUP-based online algorithm:
for each arrival i, set a threshold T}, then optimally solve SAUP(M,;, T;).

ALG: set thresholds T, with
custom prophet inequality;
run SAUP on each arrival.
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Single-Agent Utility Problem, SAUP (M, T):
interact with M, take-it-or-leave-it, assuming a price of T for claiming a reward.

SAUP-based online algorithm:
for each arrival i, set a threshold T}, then optimally solve SAUP(M,;, T;).

O max expected utility
2 given price T, to claim
P

i

Not SAUP SAUP
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For arbitrary MSPs and any matroid constraint:
= There is an online, polytime, SAUP-based, %—approx for Cabinets. to ex-ante-OPT

— we roll an original proof based on Lee and Singla 2018.
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For arbitrary MSPs and any matroid constraint:

L-approx for Cabinets.  to ex-ante-OPT

= There is a polynomial-time algorithm for SAUP(M,,T;).

= There is an online, polytime, SAUP-based,

OO ALG: set thresholds T, with
SAUP custom prophet inequality;
O

run SAUP on each arrival.
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For arbitrary MSPs and any matroid constraint:

L _approx for Cabinets. to ex-ante-OPT

= There is an online, polytime, SAUP-based, 5
= There is a polynomial-time algorithm for SAUP(M,, T;).

u There is an FPTAS for ex-ante-OPT(M,, ..., M,). allows computing T;

ALG: set thresholds T, with
custom prophet inequality;
run SAUP on each arrival.

24 /28



For arbitrary MSPs and any matroid constraint:
= There is an online, polytime, SAUP-based, %—approx for Cabinets. to ex-ante-OPT

u There is a polynomial-time algorithm for SAUP(M,;, T;).
" There is an FPTAS for ex-ante-OPT(M, ..., M,). allows computing T;

For CMS with any matroid constraint, there is an online poly(input, %)-time algorithm
that, for any € > 0, guarantees a 5 — € approx. uses add'l trick for ¢
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Suppose:
= Each agent i = 1,...,n controls a Markov Search Process M;
® Mechanism can select any feasible subset of agents as “winners”
= ¢ can collect the reward from M, iff they are selected
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Suppose:

= Each agent i = 1,...,n controls a Markov Search Process M;
® Mechanism can select any feasible subset of agents as “winners”
= ¢ can collect the reward from M, iff they are selected

For matroids, this problem admits a Price of Anarchy of %

— We sequentially offer agents prices (thresholds) from our algorithm; they run SAUP.
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Wrapup
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Summary:
= Model: n independent costly search processes, followed by selection of rewards
® Surprise 1: non-adaptive % approx
= Surprise 2: polytime  — € approx
= Bonus: Price of Anarchy 3
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Summary:
= Model: n independent costly search processes, followed by selection of rewards
® Surprise 1: non-adaptive % approx
» Surprise 2: polytime % — € approx

= Bonus: Price of Anarchy 3

Future work:
® Improved algorithms or hardness result
= Limits of “approximate index theorems” (see Chawla et al. 2025)
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