Jumpstart GLPK Bo Waggoner Updated: 2014-02-16

Abstract

The GNU Linear Programming Kit (GLPK) solves LPs and mixed integer programs either as a standalone solver or as a library callable from Python, C, and other languages. Here we focus on the standalone solver, **glpsol**, and the associated modeling language, which is very similar to AMPL. I assume familiarity with Linux command line or ability to translate into your own operating system.

1 Installation

You can install from the GLPK homepage: http://www.gnu.org/software/glpk/. Or on Linux, install using

```
$ apt-get install glpk
```

(substituting the appropriate package manager for apt-get).

Note: the documentation is included with the download; on Linux, find it at /usr/share/doc/glpk-doc/gmpl.pdf.

2 Example 0

Name this file example0.mod:

```
# example0.mod
/* this is a multi-
line comment */
param n := 10;
set N := 1..n; # N is a set consisting of numbers 1,2,...,n
var x{i in N}; # x is a choice variable indexed by elements of N
maximize name_of_objective: sum{i in N} x[i];
s.t.
name_of_constraint_1: sum{i in N} x[i] <= 7;
name_of_constraint_2{i in N}: x[i] <= 0.5; # constraint for all i in N
data; # this program has no data
```

end;

To solve this LP with glpsol, we use the -m (or -model) flag to specify that the input language is the GNU MathProg language and the -o flag to specify an output file into which we write results. From the command line, run

\$ glpsol -m example0.mod -o out.txt

3 Example 1

Name this file example1.mod:

```
# example1.mod
# shortest path on unweighted graph
set NODES;
param adj_matrix{u in NODES, v in NODES}; # 2-d array
param s, symbolic, in NODES; # start node. symbolic means not necessarily a number
param t, symbolic, in NODES; # end node
var use_edge{u in NODES, v in NODES}, binary;
/* could also have declared:
   use_edge{u in NODES, v in NODES}, >= 0, <= 1; */</pre>
minimize path_length: sum{u in NODES, v in NODES} use_edge[u,v];
s.t. start_at_s: sum{v in NODES} use_edge[s,v] = 1 + sum{u in NODES} use_edge[u,s];
s.t. end_at_t:
               sum{u in NODES} use_edge[u,t] = 1 + sum{v in NODES} use_edge[t,v];
s.t. through_others{i in NODES: i != s and i != t}:
                 sum{u in NODES} use_edge[u,i] = sum{v in NODES} use_edge[i,v];
s.t. legal_paths{u in NODES,v in NODES}: use_edge[u,v] <= adj_matrix[u,v];</pre>
data;
set NODES := A,B,C,D,E;
param adj_matrix :
   A B C D E :=
 A 0 1 0 1 0
B 1 0 1 1 0
C 1 1 0 0 1
D 0 1 0 1 0
E 0 1 1 0 0;
param s := A;
param t := E;
end;
```

4 The Output File

Running from the command line:

\$ glpsol -m example1.mod -o out.txt

produces an output file that looks like:

Problem: example1 Rows: 31 Columns: 25 (25 integer, 25 binary) Non-zeros: 90 Status: INTEGER OPTIMAL

Objective:	<pre>path_length =</pre>	3	(MINimum)
------------	--------------------------	---	-----------

No.	Row name	Activity	Lower bound	Upper bound
1	path_length	3		
2	start_at_s	1	1	=
3	end_at_t	1	1	=
4	through_others[B]			
		0	-0	=
5	through_others[C]			
		0	-0	=
6	through_others[D]			
		0	-0	=
7	<pre>legal_paths[A,A]</pre>			
		0		-0

[...]

No. Column name	Activity	Lower bound	Upper bound
*	0	0	1
2 use_edge[A,B]			
*	1	0	1
[]			
8 use_edge[B,C]			
*	1	0	1
[]			
15 use_edge[C,E]			
*	1	0	1
[]			

Integer feasibility conditions:

KKT.PE: max.abs.err = 0.00e+00 on row 0 max.rel.err = 0.00e+00 on row 0 High quality
KKT.PB: max.abs.err = 0.00e+00 on row 0 max.rel.err = 0.00e+00 on row 0 High quality

Note that I've omitted some lines describing boring constraints and variables. The key information is the value of the objective: (6th line), and the settings of the variables. In particular, in our example we see that use_edge[A,B], use_edge[B,C], and use_edge[C,E] are one and all other instances of use_edge are zero, giving us our shortest path.