
Jumpstart GLPK
Bo Waggoner
Updated: 2014-02-16

Abstract

The GNU Linear Programming Kit (GLPK) solves LPs and mixed integer programs either as a
standalone solver or as a library callable from Python, C, and other languages. Here we focus on the
standalone solver, glpsol, and the associated modeling language, which is very similar to AMPL. I
assume familiarity with Linux command line or ability to translate into your own operating system.

1 Installation

You can install from the GLPK homepage: http://www.gnu.org/software/glpk/.
Or on Linux, install using

$ apt-get install glpk

(substituting the appropriate package manager for apt-get).
Note: the documentation is included with the download; on Linux, find it at /usr/share/doc/glpk-
doc/gmpl.pdf.

2 Example 0

Name this file example0.mod:

example0.mod

/* this is a multi -

line comment */

param n := 10;

set N := 1..n; # N is a set consisting of numbers 1,2,... ,n

var x{i in N}; # x is a choice variable indexed by elements of N

maximize name_of_objective: sum{i in N} x[i];

s.t.

name_of_constraint_1: sum{i in N} x[i] <= 7;

name_of_constraint_2{i in N}: x[i] <= 0.5; # constraint for all i in N

data; # this program has no data

end;

To solve this LP with glpsol, we use the -m (or –model) flag to specify that the input language is the
GNU MathProg language and the -o flag to specify an output file into which we write results. From the
command line, run

$ glpsol -m example0.mod -o out.txt

1

3 Example 1

Name this file example1.mod:

example1.mod

shortest path on unweighted graph

set NODES;

param adj_matrix{u in NODES , v in NODES}; # 2-d array

param s, symbolic , in NODES; # start node. symbolic means not necessarily a number

param t, symbolic , in NODES; # end node

var use_edge{u in NODES , v in NODES}, binary;

/* could also have declared:

use_edge{u in NODES , v in NODES}, >= 0, <= 1; */

minimize path_length: sum{u in NODES , v in NODES} use_edge[u,v];

s.t. start_at_s: sum{v in NODES} use_edge[s,v] = 1 + sum{u in NODES} use_edge[u,s];

s.t. end_at_t: sum{u in NODES} use_edge[u,t] = 1 + sum{v in NODES} use_edge[t,v];

s.t. through_others{i in NODES: i != s and i != t}:

sum{u in NODES} use_edge[u,i] = sum{v in NODES} use_edge[i,v];

s.t. legal_paths{u in NODES ,v in NODES }: use_edge[u,v] <= adj_matrix[u,v];

data;

set NODES := A,B,C,D,E;

param adj_matrix :

A B C D E :=

A 0 1 0 1 0

B 1 0 1 1 0

C 1 1 0 0 1

D 0 1 0 1 0

E 0 1 1 0 0;

param s := A;

param t := E;

end;

4 The Output File

Running from the command line:

$ glpsol -m example1.mod -o out.txt

produces an output file that looks like:

Problem: example1

Rows: 31

Columns: 25 (25 integer, 25 binary)

Non-zeros: 90

Status: INTEGER OPTIMAL

2

Objective: path_length = 3 (MINimum)

No. Row name Activity Lower bound Upper bound

------ ------------ ------------- ------------- -------------

1 path_length 3

2 start_at_s 1 1 =

3 end_at_t 1 1 =

4 through_others[B]

0 -0 =

5 through_others[C]

0 -0 =

6 through_others[D]

0 -0 =

7 legal_paths[A,A]

0 -0

[...]

No. Column name Activity Lower bound Upper bound

------ ------------ ------------- ------------- -------------

1 use_edge[A,A]

* 0 0 1

2 use_edge[A,B]

* 1 0 1

[...]

8 use_edge[B,C]

* 1 0 1

[...]

15 use_edge[C,E]

* 1 0 1

[...]

Integer feasibility conditions:

KKT.PE: max.abs.err = 0.00e+00 on row 0

max.rel.err = 0.00e+00 on row 0

High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0

max.rel.err = 0.00e+00 on row 0

High quality

Note that I’ve omitted some lines describing boring constraints and variables. The key information is the
value of the objective: (6th line), and the settings of the variables. In particular, in our example we see
that use edge[A,B], use edge[B,C], and use edge[C,E] are one and all other instances of use edge are
zero, giving us our shortest path.

3

