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1 Non-Probabilistic Inequalities and Approximations

Exponential function. For all x,
1 + x ≤ ex.

Easily following are e.g. 1− x ≤ e−x, or (1 + x)c ≤ ecx, or
(
1 + 1

x

)c ≤ ec/x, etc.

It follows that (1 + 1/k)k ≤ e, and for k > −1 we also have the upper-bound (1 + 1/k)k+1 ≥ e. Also (and the

inequality reverses for negative x),

e−x ≤ 1− x+
x2

2
(for x ≥ 0).

Follows from Taylor’s Theorem, as we have e−x = 1− x+ x2

2 +R where R ≤ 0. See the Taylor series and Taylor’s

Theorem for ex.

Logarithm. For all x ≥ 0,

x− x2

2
≤ ln (1 + x) ≤ x.

You can push this as far as you want with the Taylor expansion, e.g.

x− x2

2
+
x3

3
− x4

4
≤ ln (1 + x) ≤ x− x2

2
+
x3

3
.

1



Cosh. The hyperbolic cosine function is cosh(x) = 1
2
ex + 1

2
e−x. For all x,

1

2
ex +

1

2
e−x ≤ ex

2/2.

Bernoulli’s Inequality. For all x ≥ −1, and n ≤ 0 or n ≥ 1,

1 + xn ≤ (1 + x)n.

For 0 < n < 1, the inequality is reversed.

See also the Binomial expansion of (1 + x)n when n is an integer.

Stirling’s Approximation for the factorial. The factorial satisfies(n
e

)n
≤ n! ≤ nn.

As n→∞, Stirling’s approximation says that

n! ≈
√

2πn
(n
e

)n
.

This is quite tight; in fact we have[1]

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .

Binomial coefficients. The binomial coefficient “n choose k” is(
n

k

)
=

n!

(n− k)!k!
,

and we have (n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
.
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Jensen’s Inequality. Suppose f is convex : for α ∈ (0, 1), f(αx+ (1− α)y) ≤ αf(x) + (1−
α)f(y). Then for any random variable X,

f (EX) ≤ E f(X).

In particular, for positive {ai},

f

(∑
aixi∑
ai

)
≤
∑
aif(xi)∑
ai

.

For concave functions, all inequalities are reversed.

f(E[x])

E[f(x)]

p-norm Inequalities. The `p norm, for 1 ≤ p, of a vector x ∈ Rd is ‖x‖p =
(∑d

j=1 |xj|p
)1/p

.

The `∞ norm is maxj |xj|. For 1 ≤ p ≤ r ≤ ∞,

‖x‖r ≤ ‖x‖p
‖x‖p ≤ d

1
p
− 1
r ‖x‖r

where 1
∞ = 0. (In this setting, there’s no difference between Lp and `p.)

The first inequality is tight for x = α(0, . . . , 0,±1, 0, . . . , 0); the second for x = α(±1, . . . ,±1).
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2 Probabilistic Inequalities and Bounds

Union Bound. For any events A1, A2, . . . (no matter how correlated),

Pr[A1 or A2 or · · · ] ≤ Pr[A1] + Pr[A2] + · · · .

If each Ai has probability p, and there are n of them, then the union bound gives np. If you think they behave

approximately independently, then the true probability should be about 1− (1− p)n ≈ np−O
(
(np)2

)
. (Using

that the Binomial expansion of (1− p)n is 1− np+
(
n
2

)
p2 − . . . .)

Markov’s Inequality. Let X be a nonnegative real-valued random variable. Then

Pr[X ≥ a] ≤ E[X]

a
.

This is especialy useful when both quantities are very small, e.g. E[X]→ 0 and we want to bound Pr[X ≥ 1].

Chebyshev’s Inequality. Let Y be a real-valued random variable. By applying Markov’s to the
variable X = |Y − E[Y ]|2, we can get

Pr [|Y − E[Y ]| ≥ b] ≤ Var(Y )

b2
.

Chernoff Bound for Binomials. Let X ∼ Binomial(m, p) (that is, the number of heads in m
independent coin flips with probability p each). Then

Pr[X ≤ k] ≤ e−(mp−k)2/2mp.

(Of course, mp is the expected number of heads.) Put another way,

Pr[X ≤ mp− c√mp] ≤ e−c
2/2.

You can get a tail bound both above and below: For k ≤ mp,

Pr[|X −mp| ≥ k] ≤ 2e−k
2/3mp.

A useful reference is Mitzenmacher and Upfal [2].

Hoeffding’s Inequality. Essentially a generalization of the above. Let X1, . . . , Xm be i.i.d.
with each Xi supported on an interval of size bi; let S =

∑
iXi. Then

Pr [|S − E[S]| ≥ k] ≤ 2e−2k2/
∑
i b

2
i .
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Tail bounds in terms of δ. A useful restatement of Hoeffding’s is as follows. Let each bi = 1
for simplicity. If we let k = |S − E[S]|, then with probability at least 1− δ,

k ≤
√
m

2
ln (2/δ).

Such rephrasing can come from any Chernoff-style tail bound and is common in e.g. PAC learning.

Chernoff+Union and log(n). Suppose (for concreteness) we have n Binomials(m, p) and
we want to claim that with probability 1 − δ, all of them are at most a distance k from their
expectation. We can show (notice the new factor of log(n))

k ≤
√
m

2
ln (n/δ)

because by Chernoff or Hoeffding, each of the n Binomials is within k of its expectation with
probability at least 1− δ

n
, so by a union bound over the n of them, the probability that any one

differs by more than k is bounded by δ.
Note we did not need independence for the union bound. Because of this phenomenon, one often sees the phrasing

that a union bound “adds a factor of log(n)”.

5



3 More “Advanced” Probabilistic Inequalities

Subgaussianity. If X has mean zero and is λ2-subgaussian, meaning E eθX ≤ eθ
2 λ2

2 for all θ > 0,
then by the Chernoff method

Pr[X ≥ t] ≤ E eθX

eθt

≤ eθ
2 λ2

2
−θt

≤ e−t
2/(2λ2)

by choosing θ = t/λ2.
X also has variance at most λ2. If X and Y are λ21 and λ22-subgaussian, respectively, then αX + βY is

(α2λ21 + β2λ22)-subgaussian, since E eθ(αX+βY ) = E eθαX E eθβY , etc. A normal(0, σ2) is σ2-subgaussian, any

centered variable with |X| ≤ λ is λ2-subgaussian, and a Binomial(n, p) minus its mean, being the sum of n

centered Bernoullis which are each 1-subgaussian, is n-subgaussian.

McDiarmid’s Inequality. Let X1, . . . , Xn be independent and write ~X = (X1, . . . , Xn). If

f( ~X) has sensitivity c, i.e. if for all ~X, ~X ′ identical except for a single Xi,∣∣∣f( ~X)− f( ~X ′)
∣∣∣ ≤ c,

then Pr
[∣∣∣f( ~X)− E f( ~X)

∣∣∣ ≥ t
]
≤ e−2t2/(nc2).

Martingales and Azuma’s. The variables X1, . . . , Xn form a martingale if each E [Xi | X1, . . . , Xi−1] =
Xi−1, for example, a random walk. If it satisfies bounded differences, i.e. |Xi −Xi−1| ≤ c for all
i with probability 1, then Azuma’s inequality states

Pr [Xn − EXn ≥ t] ≤ e−t
2/(2nc2).
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4 Geometric and Random Phenomena

Balls-in-bins, Birthday, Coupons. Consider throwing m balls uniformly at random into n bins.

(1) The birthday paradox says that, once m ≥ Θ(
√
n), we expect some bin to contain at least

two balls (a “collision”). This follows because any pair of balls has a 1
n

chance of colliding and
there are

(
m
2

)
pairs of balls, giving the expected number of collisions

(
m
2

)
1
n

.

(2) When m = n, the max-loaded bin has with very good probability a load of O (log n/ log(log n)).

(3) The coupon-collector’s problem asks how many balls must be thrown before every bin receives at
least one ball. The answer is O (n log n), as follows. When k bins are empty, the expected time to
fill one of them is n

k
, so the expected number of balls needed is n

n
+ n
n−1

+· · ·+n
1

= n
∑n

k=1
1
k

= nHn,
where Hn is called the nth harmonic number, which is on the order of log(n).

High-dimensional Cubes. The unit hypercube in Rd has vertices {0, 1}d. It has volume 1,
but the distance between two opposite vertices (e.g. (0, . . . , 0) and (1, . . . , 1)) is

√
d→∞ as

d increases. It is often helpful to visualize the “Boolean hypercube” (the set of vertices of the
hypercube) as a sequence or stack of horizontal layers, where each horizontal “slice” is the set
of vertices that have k coordinates equal to 1 and d− k coordinates equal to 0, with the “top”
(k = 0) layer containing only (0, . . . , 0) and the “bottom” (k = d) layer containing only (1, . . . , 1);
the middle layer contains

(
d
2

)
vertices.

High-dimensional Spheres. The unit sphere in Rd is the set of points at Euclidean distance
one from the origin. The volume of the enclosed ball is πd/2

Γ(1+d/2)
, where Γ is the generalization of

the factorial function to real numbers with Γ(1 + x) = x! if x is an integer. In particular, the
volume approaches zero as d→∞, although the radius is a constant 1.
A sphere of radius 0.5 centered in the unit cube will touch the center of every face of the cube,
yet encloses a volume rapidly approaching zero as d grows (fills almost none of the cube). It may
be helpful to visualize the d-dimensional sphere as a “spiky” body with little volume but reaching
out in every dimension.

The “Spherical Shell” in High Dimensions. For random vectors with independent coordinates,
we often expect concentration in a spherical “shell” at a certain distance from the origin. For
instance, suppose we choose a point in Rd by picking each coordinate Xi in {0, 1} uniformly and
independently. The squared distance to the origin is

∑d
i=1X

2
i =

∑d
i=1 Xi, which by the Chernoff

bound for Binomials is highly concentrated around d
2

; in other words, the distance to the origin is

concentrated near
√
d/2, which is to say most of the probability lies in a spherical shell.
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5 Proof Techniques

Iterated Expectations. The expected value of X is the expected value, over all values of Y , of
the expected value of X given Y .

E
X
X = E

Y

[
E
X|Y

X

]
.

This allows computing the expected value of X “indirectly” by marginalizing over Y .

Minimax (“Yao’s Principle”). The best deterministic algorithm for a fixed input distribution
beats any randomized algorithm on a worst-case input. Let A be a randomized algorithm (that is,
distribution over deterministic algorithms) and let X be a distribution over inputs. Then

max
deterministic algos a

E performance(a,X ) ≥ min
inputs x

E performance(A, x).

This is good for showing lower bounds, like “no randomized algorithm has an approximation factor
better than c”. To prove this, you can construct a distribution over inputs and show that every
deterministic algorithm does worse than c on this distribution.

Principle of Deferred Decisions. If you have a randomized algorithm or are e.g. building a
randomized graph, avoid constructing or reasoning about realizations of a particular piece until
your algorithm/analysis touches it. For example, when traversing a random graph, you don’t need
to reason about the probability of all possible realized graphs, just realizations of the nodes and
edges your traversal touches.
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