Tips, Tricks, and Techniques for Theoretical Computer Science

Updated: 2018-09-26 Contributors:

- Thibaut Horel
- Bo Waggoner

Contents

1	Non-Probabilistic Inequalities and Approximations	1
2	Probabilistic Inequalities and Bounds	4
3	More "Advanced" Probabilistic Inequalities	6
4	Geometric and Random Phenomena	7
5	Proof Techniques	8

1 Non-Probabilistic Inequalities and Approximations

Exponential function. For all x,

 $1 + x \le e^x.$

Easily following are e.g. $1 - x \le e^{-x}$, or $(1 + x)^c \le e^{cx}$, or $(1 + \frac{1}{x})^c \le e^{c/x}$, etc. It follows that $(1 + 1/k)^k \le e$, and for k > -1 we also have the upper-bound $(1 + 1/k)^{k+1} \ge e$. Also (and the inequality reverses for negative x),

$$e^{-x} \le 1 - x + \frac{x^2}{2}$$
 (for $x \ge 0$).

Follows from Taylor's Theorem, as we have $e^{-x} = 1 - x + \frac{x^2}{2} + R$ where $R \le 0$. See the Taylor series and Taylor's Theorem for e^x .

Logarithm. For all $x \ge 0$,

$$x - \frac{x^2}{2} \le \ln\left(1 + x\right) \le x$$

You can push this as far as you want with the Taylor expansion, e.g.

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.$$

Cosh. The hyperbolic cosine function is $\cosh(x) = \frac{1}{2}e^x + \frac{1}{2}e^{-x}$. For all x,

$$\frac{1}{2}e^x + \frac{1}{2}e^{-x} \le e^{x^2/2}.$$

Bernoulli's Inequality. For all $x \ge -1$, and $n \le 0$ or $n \ge 1$,

$$1 + xn \le (1+x)^n.$$

For 0 < n < 1, the inequality is reversed.

See also the Binomial expansion of $(1+x)^n$ when n is an integer.

Stirling's Approximation for the factorial. The factorial satisfies

$$\left(\frac{n}{e}\right)^n \le n! \le n^n.$$

As $n \to \infty$, Stirling's approximation says that

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

This is quite tight; in fact we have[1]

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}} \le n! \le \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}}.$$

Binomial coefficients. The binomial coefficient "n choose k" is

$$\binom{n}{k} = \frac{n!}{(n-k)!k!},$$

and we have

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{ne}{k}\right)^k.$$

Jensen's Inequality. Suppose f is *convex*: for $\alpha \in (0, 1)$, $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$. Then for any random variable X,

$$f\left(\mathbb{E} X\right) \le \mathbb{E} f(X).$$

In particular, for positive $\{a_i\}$,

$$f\left(\frac{\sum a_i x_i}{\sum a_i}\right) \le \frac{\sum a_i f(x_i)}{\sum a_i}.$$

For concave functions, all inequalities are reversed.

p-norm Inequalities. The ℓ_p norm, for $1 \leq p$, of a vector $x \in \mathbb{R}^d$ is $||x||_p = \left(\sum_{j=1}^d |x_j|^p\right)^{1/p}$. The ℓ_∞ norm is $\max_j |x_j|$. For $1 \leq p \leq r \leq \infty$,

$$||x||_{r} \le ||x||_{p}$$
$$||x||_{p} \le d^{\frac{1}{p} - \frac{1}{r}} ||x||_{p}$$

where $\frac{1}{\infty} = 0$. (In this setting, there's no difference between L_p and ℓ_p .) The first inequality is tight for $x = \alpha(0, \ldots, 0, \pm 1, 0, \ldots, 0)$; the second for $x = \alpha(\pm 1, \ldots, \pm 1)$.

2 Probabilistic Inequalities and Bounds

Union Bound. For any events A_1, A_2, \ldots (no matter how correlated),

$$\Pr[A_1 \text{ or } A_2 \text{ or } \cdots] \leq \Pr[A_1] + \Pr[A_2] + \cdots$$

If each A_i has probability p, and there are n of them, then the union bound gives np. If you think they behave approximately independently, then the true probability should be about $1 - (1-p)^n \approx np - O((np)^2)$. (Using that the Binomial expansion of $(1-p)^n$ is $1 - np + {n \choose 2}p^2 - \dots$)

Markov's Inequality. Let X be a nonnegative real-valued random variable. Then

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

This is especially useful when both quantities are very small, e.g. $\mathbb{E}[X] \to 0$ and we want to bound $\Pr[X \ge 1]$.

Chebyshev's Inequality. Let Y be a real-valued random variable. By applying Markov's to the variable $X = |Y - \mathbb{E}[Y]|^2$, we can get

$$\Pr\left[|Y - E[Y]| \ge b\right] \le \frac{\mathsf{Var}(Y)}{b^2}$$

Chernoff Bound for Binomials. Let $X \sim \text{Binomial}(m, p)$ (that is, the number of heads in m independent coin flips with probability p each). Then

$$\Pr[X \le k] \le e^{-(mp-k)^2/2mp}$$

(Of course, mp is the expected number of heads.) Put another way,

$$\Pr[X \le mp - c\sqrt{mp}] \le e^{-c^2/2}.$$

You can get a tail bound both above and below: For $k \leq mp$,

$$\Pr[|X - mp| \ge k] \le 2e^{-k^2/3mp}.$$

A useful reference is Mitzenmacher and Upfal [2].

Hoeffding's Inequality. Essentially a generalization of the above. Let X_1, \ldots, X_m be i.i.d. with each X_i supported on an interval of size b_i ; let $S = \sum_i X_i$. Then

$$\Pr\left[|S - \mathbb{E}[S]| \ge k\right] \le 2e^{-2k^2/\sum_i b_i^2}.$$

Tail bounds in terms of δ . A useful restatement of Hoeffding's is as follows. Let each $b_i = 1$ for simplicity. If we let $k = |S - \mathbb{E}[S]|$, then with probability at least $1 - \delta$,

$$k \le \sqrt{\frac{m}{2} \ln\left(2/\delta\right)}.$$

Such rephrasing can come from any Chernoff-style tail bound and is common in e.g. PAC learning.

Chernoff+Union and $\log(n)$. Suppose (for concreteness) we have n Binomials(m, p) and we want to claim that with probability $1 - \delta$, all of them are at most a distance k from their expectation. We can show (notice the new factor of $\log(n)$)

$$k \le \sqrt{\frac{m}{2}\ln\left(n/\delta\right)}$$

because by Chernoff or Hoeffding, each of the n Binomials is within k of its expectation with probability at least $1 - \frac{\delta}{n}$, so by a union bound over the n of them, the probability that any one differs by more than k is bounded by δ .

Note we did not need independence for the union bound. Because of this phenomenon, one often sees the phrasing that a union bound "adds a factor of log(n)".

3 More "Advanced" Probabilistic Inequalities

Subgaussianity. If X has mean zero and is λ^2 -subgaussian, meaning $\mathbb{E} e^{\theta X} \leq e^{\theta^2 \frac{\lambda^2}{2}}$ for all $\theta > 0$, then by the Chernoff method

$$\Pr[X \ge t] \le \frac{\mathbb{E} e^{\theta X}}{e^{\theta t}}$$
$$\le e^{\theta^2 \frac{\lambda^2}{2} - \theta t}$$
$$\le e^{-t^2/(2\lambda^2)}$$

by choosing $\theta = t/\lambda^2$.

X also has variance at most λ^2 . If X and Y are λ_1^2 and λ_2^2 -subgaussian, respectively, then $\alpha X + \beta Y$ is $(\alpha^2 \lambda_1^2 + \beta^2 \lambda_2^2)$ -subgaussian, since $\mathbb{E} e^{\theta(\alpha X + \beta Y)} = \mathbb{E} e^{\theta \alpha X} \mathbb{E} e^{\theta \beta Y}$, etc. A normal $(0, \sigma^2)$ is σ^2 -subgaussian, any centered variable with $|X| \leq \lambda$ is λ^2 -subgaussian, and a Binomial(n, p) minus its mean, being the sum of n centered Bernoullis which are each 1-subgaussian, is n-subgaussian.

McDiarmid's Inequality. Let X_1, \ldots, X_n be independent and write $\vec{X} = (X_1, \ldots, X_n)$. If $f(\vec{X})$ has sensitivity c, i.e. if for all \vec{X} , $\vec{X'}$ identical except for a single X_i ,

$$\begin{split} \left|f(\vec{X}) - f(\vec{X'})\right| &\leq c, \end{split}$$
 then
$$\Pr\left[\left|f(\vec{X}) - \mathbb{E}\,f(\vec{X})\right| \geq t\right] \leq e^{-2t^2/(nc^2)}. \end{split}$$

Martingales and Azuma's. The variables X_1, \ldots, X_n form a *martingale* if each $\mathbb{E}[X_i | X_1, \ldots, X_{i-1}] = X_{i-1}$, for example, a random walk. If it satisfies bounded differences, i.e. $|X_i - X_{i-1}| \le c$ for all *i* with probability 1, then Azuma's inequality states

$$\Pr\left[X_n - \mathbb{E}\,X_n \ge t\right] \le e^{-t^2/(2nc^2)}.$$

4 Geometric and Random Phenomena

Balls-in-bins, Birthday, Coupons. Consider throwing m balls uniformly at random into n bins.

(1) The *birthday paradox* says that, once $m \ge \Theta(\sqrt{n})$, we expect some bin to contain at least two balls (a "collision"). This follows because any pair of balls has a $\frac{1}{n}$ chance of colliding and there are $\binom{m}{2}$ pairs of balls, giving the expected number of collisions $\binom{m}{2}\frac{1}{n}$.

(2) When m = n, the max-loaded bin has with very good probability a load of $O(\log n / \log(\log n))$.

(3) The coupon-collector's problem asks how many balls must be thrown before every bin receives at least one ball. The answer is $O(n \log n)$, as follows. When k bins are empty, the expected time to fill one of them is $\frac{n}{k}$, so the expected number of balls needed is $\frac{n}{n} + \frac{n}{n-1} + \cdots + \frac{n}{1} = n \sum_{k=1}^{n} \frac{1}{k} = nH_n$, where H_n is called the *n*th harmonic number, which is on the order of $\log(n)$.

High-dimensional Cubes. The unit hypercube in \mathbb{R}^d has vertices $\{0,1\}^d$. It has volume 1, but the distance between two opposite vertices (*e.g.* $(0,\ldots,0)$ and $(1,\ldots,1)$) is $\sqrt{d} \to \infty$ as d increases. It is often helpful to visualize the "Boolean hypercube" (the set of vertices of the hypercube) as a sequence or stack of horizontal layers, where each horizontal "slice" is the set of vertices that have k coordinates equal to 1 and d - k coordinates equal to 0, with the "top" (k = 0) layer containing only $(0, \ldots, 0)$ and the "bottom" (k = d) layer containing only $(1, \ldots, 1)$; the middle layer contains $\binom{d}{2}$ vertices.

High-dimensional Spheres. The unit sphere in \mathbb{R}^d is the set of points at Euclidean distance one from the origin. The volume of the enclosed ball is $\frac{\pi^{d/2}}{\Gamma(1+d/2)}$, where Γ is the generalization of the factorial function to real numbers with $\Gamma(1 + x) = x!$ if x is an integer. In particular, the volume approaches zero as $d \to \infty$, although the radius is a constant 1.

A sphere of radius 0.5 centered in the unit cube will touch the center of every face of the cube, yet encloses a volume rapidly approaching zero as d grows (fills almost none of the cube). It may be helpful to visualize the d-dimensional sphere as a "spiky" body with little volume but reaching out in every dimension.

The "Spherical Shell" in High Dimensions. For random vectors with independent coordinates, we often expect concentration in a spherical "shell" at a certain distance from the origin. For instance, suppose we choose a point in \mathbb{R}^d by picking each coordinate X_i in $\{0,1\}$ uniformly and independently. The squared distance to the origin is $\sum_{i=1}^{d} X_i^2 = \sum_{i=1}^{d} X_i$, which by the Chernoff bound for Binomials is highly concentrated around $\frac{d}{2}$; in other words, the distance to the origin is concentrated near $\sqrt{d/2}$, which is to say most of the probability lies in a spherical shell.

5 **Proof Techniques**

Iterated Expectations. The expected value of X is the expected value, over all values of Y, of the expected value of X given Y.

$$\mathbb{E}_X X = \mathbb{E}_Y \left[\mathbb{E}_{X|Y} X \right].$$

This allows computing the expected value of X "indirectly" by marginalizing over Y.

Minimax ("Yao's Principle"). The best deterministic algorithm for a fixed input distribution beats any randomized algorithm on a worst-case input. Let \mathcal{A} be a randomized algorithm (that is, distribution over deterministic algorithms) and let \mathcal{X} be a distribution over inputs. Then

 $\max_{\text{deterministic algos } a} \mathbb{E} \operatorname{performance}(a, \mathcal{X}) \geq \min_{\text{inputs } x} \mathbb{E} \operatorname{performance}(\mathcal{A}, x).$

This is good for showing lower bounds, like "no randomized algorithm has an approximation factor better than c". To prove this, you can construct a distribution over inputs and show that every deterministic algorithm does worse than c on this distribution.

Principle of Deferred Decisions. If you have a randomized algorithm or are *e.g.* building a randomized graph, avoid constructing or reasoning about realizations of a particular piece until your algorithm/analysis touches it. For example, when traversing a random graph, you don't need to reason about the probability of all possible realized graphs, just realizations of the nodes and edges your traversal touches.

References

- [1] Herbert Robbins, A Remark on Stirling's Formula, The American Mathematical Monthly, 1955.
- [2] Michael Mitzenmacher and Eli Upfal, *Probability and Computing: Randomized Algorithms and Probabilistic Analysis*, Cambridge University Press, 2005.