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1 Non-Probabilistic Inequalities and Approximations

Exponential function. For all z,
1+ <e”.

Easily following are e.g. 1 — 2z <e™%, or (14 z)¢ < e*, or (1 + %)C < /% etc.
It follows that (1 + 1/k)* <e, and for k > —1 we also have the upper-bound (1 + 1/k)**1 > ¢. Also (and the
inequality reverses for negative z),

.TQ
e‘xgl—x—l—? (for z > 0).

Follows from Taylor's Theorem, as we have e ™ =1 —x + % + R where R < 0. See the Taylor series and Taylor's

Theorem for e*.

Logarithm. For all z >0,
2

x—%gln(l—l—x)g:c.

You can push this as far as you want with the Taylor expansion, e.g.

2 3 4 2 3

—+———<In P — — + —.
9 T3 T = T=TTy

T —



1

5€ " For all z,

Cosh. The hyperbolic cosine function is cosh(z) = fe® +

1 1
5630 + §€_$ < e /2,

Bernoulli’s Inequality. Forallz > —1,and n <0orn > 1,
I1+azn < (1+x)".

For 0 < n < 1, the inequality is reversed.

See also the Binomial expansion of (1 4+ x)™ when n is an integer.

Stirling’s Approximation for the factorial. The factorial satisfies

n n
(—) <nl<n"
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As n — oo, Stirling’s approximation says that

This is quite tight; in fact we have[l]
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Binomial coefficients. The binomial coefficient “n choose k" is

()=

and we have



Jensen’s Inequality. Suppose f is convex: for o € (0,1), flaz+ (1 —a)y) < af(x) + (1 —
a)f(y). Then for any random variable X,

JEX) <Ef(X).

E[fx)]
A

In particular, for positive {a;},

() = =

For concave functions, all inequalities are reversed.

/p
p-norm Inequalities. The ¢, norm, for 1 < p, of a vector z € R% is ||z, = (Z‘;:l |xj|p> :
The /o, norm is max; |z;|. For 1 <p <r < oo,

]l < N1l

1_1
[zllp < dv -l

where = = 0. (In this setting, there's no difference between L,, and ¢,,.)

oo

The first inequality is tight for x = «(0,...,0,£1,0,...,0); the second for z = a(+£1,...,£1).



2 Probabilistic Inequalities and Bounds

Union Bound. For any events A, Ay, ... (no matter how correlated),
Pr[A; or Ay or -] < Pr[Ay] + Pr{Ay] +---.

If each A; has probability p, and there are n of them, then the union bound gives np. If you think they behave
approximately independently, then the true probability should be about 1 — (1 — p)® &~ np — O ((np)z) (Using
that the Binomial expansion of (1 —p)™is 1 —np + (g)p2 —...)

Markov’s Inequality. Let X be a nonnegative real-valued random variable. Then

E[X]

Pr(X >a] <
a

This is especialy useful when both quantities are very small, e.g. E[X] — 0 and we want to bound Pr[X > 1].

Chebyshev’s Inequality. Let Y be a real-valued random variable. By applying Markov's to the
variable X = |V — E[Y]|?, we can get

Var(Y)

Prlly — BY)| 25 < -

Chernoff Bound for Binomials. Let X ~ Binomial(m,p) (that is, the number of heads in m
independent coin flips with probability p each). Then

Pr[X < k] < ¢ mp=k)?*/2mp,
(Of course, mp is the expected number of heads.) Put another way,
Pr[X < mp — cy/mp] < e 12,
You can get a tail bound both above and below: For &£ < mp,
Pr]|X — mp| > k] < 2e7* /3,

A useful reference is Mitzenmacher and Upfal [2].

Hoeffding’s Inequality. Essentially a generalization of the above. Let Xi,...,X,, be i.i.d.
with each X; supported on an interval of size b;; let S = ). X;. Then

Pr[|S — E[S]| > k] < 22K/
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Tail bounds in terms of §. A useful restatement of Hoeffding's is as follows. Let each b; =1
for simplicity. If we let & = |S — E[S]|, then with probability at least 1 — ¢,

k< ,/%m(z/(s).

Such rephrasing can come from any Chernoff-style tail bound and is common in e.g. PAC learning.

Chernoff+Union and log(n). Suppose (for concreteness) we have n Binomials(m, p) and
we want to claim that with probability 1 — ¢, all of them are at most a distance k from their
expectation. We can show (notice the new factor of log(n))

k< %m (n/5)

because by Chernoff or Hoeffding, each of the n Binomials is within k of its expectation with
probability at least 1 — % so by a union bound over the n of them, the probability that any one
differs by more than k is bounded by 9.
Note we did not need independence for the union bound. Because of this phenomenon, one often sees the phrasing
that a union bound “adds a factor of log(n)".



3 More “Advanced” Probabilistic Inequalities

2 2
Subgaussianity. If X has mean zero and is A2-subgaussian, meaning E ¢X < %> for all 6 > 0,
then by the Chernoff method
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by choosing 6 = t/\%.

X also has variance at most A2. If X and Y are A\? and A3-subgaussian, respectively, then aX + BY is
(a®A} + B%\2)-subgaussian, since Ee/(@X+8Y) = E 02X E8Y  etc. A normal(0,0?) is o2-subgaussian, any
centered variable with |X| < X is A\2-subgaussian, and a Binomial(n, p) minus its mean, being the sum of n

centered Bernoullis which are each 1-subgaussian, is n-subgaussian.

McDiarmid’s Inequality. Let X;,..., X, be independent and write X = (X1,..., Xp). If
f(X) has sensitivity c, i.e. if for all X, X' identical except for a single X,

then Pr [

Martingales and Azuma’s. Thevariables X7, ..., X,, form a martingale ifeach E [X; | X1, ..., X;_1] =
X;_1, for example, a random walk. If it satisfies bounded differences, i.e. | X; — X; 1| < ¢ for all
1 with probability 1, then Azuma's inequality states

Pr[X, —EX, >t <e /),



4 Geometric and Random Phenomena

Balls-in-bins, Birthday, Coupons. Consider throwing m balls uniformly at random into n bins.

(1) The birthday paradox says that, once m > ©(y/n), we expect some bin to contain at least
two balls (a “collision”). This follows because any pair of balls has a * chance of colliding and

there are (T;) pairs of balls, giving the expected number of collisions (’;)%

(2) When m = n, the max-loaded bin has with very good probability a load of O (log n/log(logn)).

(3) The coupon-collector’s problem asks how many balls must be thrown before every bin receives at
least one ball. The answer is O (nlogn), as follows. When k bins are empty, the expected time to
fill one of them is 7, so the expected number of balls needed is »+-"~+---+% =n Zzzl % =nH,,
where H,, is called the nth harmonic number, which is on the order of log(n).

High-dimensional Cubes. The unit hypercube in R has vertices {0,1}¢. It has volume 1,
but the distance between two opposite vertices (e.g. (0,...,0) and (1,...,1))is v/d — oo as
d increases. It is often helpful to visualize the “Boolean hypercube” (the set of vertices of the
hypercube) as a sequence or stack of horizontal layers, where each horizontal “slice” is the set
of vertices that have k£ coordinates equal to 1 and d — k coordinates equal to 0, with the “top”
(k = 0) layer containing only (0, ...,0) and the “bottom” (k = d) layer containing only (1,...,1);

the middle layer contains (g) vertices.

High-dimensional Spheres. The unit sphere in R? is the set of points at Euclidean distance
one from the origin. The volume of the enclosed ball is 1“(%/[12/2)' where I" is the generalization of
the factorial function to real numbers with I'(1 + z) = ! if = is an integer. In particular, the
volume approaches zero as d — oo, although the radius is a constant 1.

A sphere of radius 0.5 centered in the unit cube will touch the center of every face of the cube,
yet encloses a volume rapidly approaching zero as d grows (fills almost none of the cube). It may
be helpful to visualize the d-dimensional sphere as a “spiky” body with little volume but reaching

out in every dimension.

The “Spherical Shell” in High Dimensions. For random vectors with independent coordinates,
we often expect concentration in a spherical “shell” at a certain distance from the origin. For
instance, suppose we choose a point in R¢ by picking each coordinate X; in {0, 1} uniformly and
independently. The squared distance to the origin is Zle X2 = Zle X, which by the Chernoff
bound for Binomials is highly concentrated around ¢; in other words, the distance to the origin is

concentrated near \/d/2, which is to say most of the probability lies in a spherical shell.



5 Proof Techniques

Iterated Expectations. The expected value of X is the expected value, over all values of Y, of
the expected value of X given'Y.

This allows computing the expected value of X “indirectly” by marginalizing over Y.

Minimax (“Yao’s Principle”). The best deterministic algorithm for a fixed input distribution
beats any randomized algorithm on a worst-case input. Let A be a randomized algorithm (that is,
distribution over deterministic algorithms) and let X' be a distribution over inputs. Then

max E performance(a, X) > min E performance(.A, x).
deterministic algos a inputs x

This is good for showing lower bounds, like “no randomized algorithm has an approximation factor
better than ¢". To prove this, you can construct a distribution over inputs and show that every
deterministic algorithm does worse than ¢ on this distribution.

Principle of Deferred Decisions. If you have a randomized algorithm or are e.g. building a
randomized graph, avoid constructing or reasoning about realizations of a particular piece until
your algorithm /analysis touches it. For example, when traversing a random graph, you don't need
to reason about the probability of all possible realized graphs, just realizations of the nodes and
edges your traversal touches.
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